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Regularization

* Why is there a generalization gap between training and test data?

* Overfitting (model describes statistical peculiarities)
* Model unconstrained in areas where there are no training examples

= methods to reduce the generalization gap
e Technically means adding terms to loss function

* But colloquially means any method (hack) to reduce gap between
training and test data



Regularization

* Implicit regularization

* Early stopping

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation



Explicit regularization

e Standard loss function:
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Explicit regularization

e Standard loss function:
¢ = argmin [L[cb]]

¢
I
= arg;nin [Z i, yz]]
i=1

» Regularization adds an extra term
I

¢ = arg;nin [Z Cilxi, yil + A g[cb]]
=1

* Where g|¢] is smaller for preferred parameters
A > 0 controls the strength of influence



Explicit regularization

Loss function for Gabor model
of Lecture 6 and Chapter 6.

O denotes local minima




Explicit regularization

Regularization

Example of a regularization
function that prefers
parameters close to O.




Fewer local minima and the

. . : : absolute minimum has
Explicit regularization e
( A \

Loss + regularization

0
Po

O denotes local minima



Probabilistic interpretation

e Maximum likelihood:

g;b = argmax
é

HPT(}’z‘Xz',Qb)]

i=1
* Regularization is equivalent to adding a over parameters

q?b = argmax

¢ 1] Priyilxi, ¢)Pr(¢)

1=1

... what you know about parameters before seeing the data



Equivalence
* Explicit regularization:
I
¢ = arg;nin [Z bilxi, yi] + A g[qb]}
i=1

* Probabilistic interpretation:
I

1] Priyilxi, ¢)Pr(e)

1=1

qAb = argmax
¢

* Converting to Negative Log Likelihood (e.g. — log(+) ):

A-gl¢] = —log|Pr(e)



L2 Regularization

* Most common regularizer is
* Favors smaller parameters (like in previous example)

A

b = argql;nin L[qb, {Xia Yz}] + A Z ¢§
J

 Also called
* In neural networks, usually just for weights, and called



Why does L2 regularization help?

By e R? a B, € R? B, e R? B3 € R?

Outputs are weighted
linear combination of
last layer activations.

Smaller weights
attenuate changes.
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Same for the
pre-activations
into the last layer
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Why does L2 regularization help?

And so on...

All the way back.

15



Why does L2 regularization help?

» Discourages fitting excessively to the training data (overfitting)
* Encourages smoothness between datapoints



L2 regularization (simple net from last lecture)

a)I , A=0 b) A = 0.00001 c) A = 0.0001
’ ’ ’
>/ \ / \ / \
3_0.0-/ ] / -//'
g y \ 'R \ 41 \ ;
NS NS NS
'I‘Oo.o 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
d)I , A = 0.001 e) A =0.01 f) A=0.1
- | A\ N\ A\
E._oo / - / /
5 \ 7! \ / \ /
I 0o.o 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Input, x Input, x



PyTorch Explicit L2 Regularizer

SGD

CLASS torch.optim.SGD (params, 1r=0. 001, momentum=0, dampening=0, weight_decay=6,
—— .
nesterov=False, *, maximize=False, foreach=None, differentiable=False) [SOURCE]

Implements stochastic gradient descent (optionally with momentum).

Parameters

)

params (jterable) - iterable of parameters to optimize or dicts defining parameter groups
Ir (float, optional) - learning rate (default: 1e-3)
momentum (float, optional) - momentum factor (default: 0)

weight_decay (float, optional) - weight decay (L2 penalty) (default: 0)
N —

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

ADAM

CLASS torch.optim.Adam (params, 1r=0.001, betas=(0.9, 0.999), eps=1e-08,
weight_decay=0, amsgrad=False, *, foreach=None, maximize=False,
capturable=False, differentiable=False, fused=None) [SOURCE]

Implements Adam algorithm.

Parameters

—)

params (iterable) - iterable of parameters to optimize or dicts defining parameter groups
Ir (float, Tensor, optional) - learning rate (default: 1e-3). A tensor LR is not yet supported
for all our implementations. Please use a float LR if you are not also specifying fused=True
or capturable=True.
betas (Tuple[float, float], optional) - coefficients used for computing running averages of
gradient and its square (default: (0.9, 0.999))
eps (float, optional) - term added to the denominator to improve numerical stability
(default: 1e-8)
weight_decay (float, optional) - weight decay (L2 penalty) (default: 0)

——

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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Regularization

* Explicit regularization

* Early stopping

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation



Implicit regularization

oLlgd g,
(9qb a— 0

bti1 =P —

* In the limit, as &« — 0, the gradient
descent equation becomes the
gradient flow differential equation.

* Doesn’t converge to the same place

|8 gradient
descent
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Implicit regularization

L[] lim d¢ _ _ G_L
3¢ @0 dt 0

bti1 =P —

* The implicit regularization can be derived:

OL ||?

Loplg] = Ligl + 7 | 52

o
4




Implicit regularization

a) Loss b) Regularization c)  Loss + regularization

gradient
descent

0 0
bo b0
Gradient descent doesn’t Plot of the Implicit regularization With regularization, continuous

i 2
converge to same location as (~||5L/a¢)|| ) to be added to loss descent converges to same place
(continuous) gradient flow. 22



Implicit regularization of SGD

* Gradient descent disfavors areas where gradients are steep

~ o || 0L
Leplé| = L|g] + 190

* SGD likes all batches to have similar gradients

0L, 0L 2
olo)

Lscplo] = Lop|o] + %




Implicit regularization of SGD

* Gradient descent disfavors areas where gradients are steep

~ o ||OL |
L =L — || =—
* SGD likes all batches to have similar gradients
~ ~ « = aLb OL 2
LSGD[(p]:LGD[(p]—FEb:Zl 96 0%
Mo lon|? o EN||oL, L]
BRI D3 vt

* Depends on learning rate — perhaps why larger learning rates generalize better.

—_—



Loss and Regularlzatlon Surfaces

Loss, L[]

Original Gabor Model
Loss

225

10-10

GD modification
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MNISTID no label noise

=== Full batch, LR = 0.5
=== Full batch, LR = 0.1
k Full batch, LR = 0.05

100 200 300 400
Hidden layer size

Generally, performance is

* best for larger learning rates
e best with smaller batches

MNISTID no label noise

=== Batch size 10, LR = 0.1
=== Batch Size 100, LR = 0.1
Full batch (4000), LR = 0.1

Test
0. \‘ Train
0 100 200 300 400

Hidden layer size
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Recap: Implicit regularization of GD and SGD

 Larger learning rates may lead to better generalization

* SGD seems to favor places where gradients are stable (all batches
aggre on slope)

* SGD generalizes better than GD
* Smaller batches in SGD generally perform better than larger ones



Regularization

* Explicit regularization

* Implicit regularization

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation



Early stopping

* If we stop training early, weights don’t have time to overfit to noise
* Weights start small, don’t have time to get large
» Reduces effective model complexity

* Known as

* Don’t have to re-train with different hyper-parameters — just
“checkpoint” regularly and pick the model with lowest validation loss
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Simplified shallow network model with 14 linear regions initialized randomly (cyan curve in (a) ) and trained wgi‘éh
SGD using a batch size of five and a learning rate of 0.05.



Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation



Ensembling

* Combine several models —an ensemble

 Combining outputs

| [Mean | Median/Frequent (Robust

Regression Mean of outputs Median of outputs
Classification Mean before softmax Most frequent predicted class
* Can be simply different initializations or even different models

e Or train with different subsets of the data resampled with
replacements — bootstrap aggregating (bagging)
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Single Mo

Original

del vs Bagged Ensemble
b) Model 1 c)

Single model

Model 2
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Size of orange point indicates number of
times the data point was re-sampled.
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Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Adding noise
* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation



Randomly clamp ~50% of hidden units to 0 on each

D 'O p O Ut iteration.

Iteration: 1 l[teration: 2

Iteration: 3 I[teration: 4

Makes the network less dependent on any given hidden unit.
At test time, all hidden units are active, which was not the case during training
* Must rescale using weight scaling inference rule — multiple weights by (1 — dropout probability)
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Dropout

a) Original b) Turn off hidden unit 8 C) 2000 iters dropout (7/8/9)

> ] |
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Input, Input, x Input, x

* Prevents situations where subsequent hidden units correct for excessive

swings from earlier hidden units
e (Can eliminate kinks in function that are far from data and don’t contribute to

training loss
36



Monte Carlo Dropout for Inference

* Run the network multiple times with different random subsets of
units clamped to zero (as in training)

 Combine the results using an ensembling method

* This is closely related to ensembling in that every random version of
the network is a different model; however, we do not have to train or
store multiple networks here.



Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Dropout

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation



Adding noise

Adding noise to input with different variances.

3)4.0 b) c)
‘ o, = 0.0 . o, = 0.60 . o, = 1.0
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* toinputs —induces weight regularization (see Exercise 9.3 in UDL)
* to weights — makes robust to small weight perturbations

» to outputs (labels) — reduces “overconfident” probability for target class .



Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Dropout

* Adding noise

* Data augmentation



Transfer & Multitask Learning, Augmentation

e Strictly speaking not regularization, but can help improve
generalization when dataset sizes are limited



Transfer Learning

(1) Train the model for
segmentation

Segmentation Assume we have lots of
Model > . . .
OUEPUE layer segmentation training data
Y . )
Depth : Assume we have limited
Model 7| output layer | * depth training data

(2) Replace the final layers to (3) Either:

match the new task and a) Freeze the rest of the layers and

train the final layers
b) Fine tune the entire model
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Multi-Task Learning

Segmentation
output layer

Model

Depth
output layer

* Train the model for 2 or more tasks simultaneously
* Weighted combo of loss fncs
Liotar = @ - Lsegmentaiton + .8 ) Ldepth
* Less likely to overfit to training data of one task

* Can be harder to get training to converge. Might have to vary the
individual task loss weightings, a and £.
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Self-Supervised Learning

_| Inpainting

Model ~ | output layer

The animal didn’t cross the because it was too tired.

Mask out part of the training data
Train model to try to infer missing data
* masked data is the target
=» Model learns characteristics of the data

Then apply transfer learning



Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning



Data augmentation

Flip

Rotate and crop

d)

Vertical stretch
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Image augmentation in PyTorch

import torch

import torchvision.transforms as transforms

# Define augmentation pipeline
transform = transforms.Compose( [

transforms
transforms

transforms.
transforms.
transforms.
transforms.

transforms

1)

.RandomHorizontalFlip(p=0.5),
.RandomVerticalFlip(p=0.3),

RandomRotation(degrees=30),

ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
RandomAffine(degrees=20, translate=(0.2, 0.2), shear=10),
RandomPerspective(distortion_scale=0.5, p=0.5),

.ToTensor(), # Convert image to tensor

# Apply transformations multiple times to visualize augmentation
augmented_image = transform(image)

https://pytorch.org/vision/main/transforms.html
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Error

Data Augmentation: MNIST1D

TrainError 0.00, Test Error 31.00

100

80 A

60 -

40 -

— train
— ftest
—— test (augmented)

20 A

Epoch

30 40

50

Examples in training set: 4000
Examples in test set: 1000
Length of each example: 40

* Randomly circularly rotate
* randomly scale between
0.8and 1.2
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Regularization overview

Make function smoother

Increase data

~

Data
augmentation
Multi-task
learning
Transfer
learning

J

Combine multiple models Find wider minima
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Feedback?

.....
.............
.......



https://docs.google.com/forms/d/e/1FAIpQLSfrbURkg6kpBTcZXCy_m622xuWEB0-eP4mYUSiQJfqkf7-0QQ/viewform?usp=header

