BOSTON
UNIVERSITY

Regularization

And other ways to improve test performance

DL4DS — Spring 2025

https://udlbook.github.io/udlbook/

Regularization

* Why is there a generalization gap between training and test data?

* Overfitting (model describes statistical peculiarities)
* Model unconstrained in areas where there are no training examples

= methods to reduce the generalization gap
e Technically means adding terms to loss function

* But colloquially means any method (hack) to reduce gap between
training and test data

Regularization

* Implicit regularization

* Early stopping

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation

Explicit regularization

e Standard loss function:

gAb = argmin [L[cb]]
¢

I
= argmin [Z i, yz]]
i=1

¢

Explicit regularization

e Standard loss function:
¢ = argmin [L[cb]]

¢
I
= arg;nin [Z i, yz]]
i=1

» Regularization adds an extra term

I
¢ = argmin [Z Cilxi, yil + A g[cb]]
1=1

Explicit regularization

e Standard loss function:
¢ = argmin [L[cb]]

¢
I
= arg;nin [Z i, yz]]
i=1

» Regularization adds an extra term
I

¢ = arg;nin [Z Cilxi, yil + A g[cb]]
=1

* Where g|¢] is smaller for preferred parameters
A > 0 controls the strength of influence

Explicit regularization

Loss function for Gabor model
of Lecture 6 and Chapter 6.

O denotes local minima

Explicit regularization

Regularization

Example of a regularization
function that prefers
parameters close to O.

Fewer local minima and the

. . : : absolute minimum has
Explicit regularization e
(A \

Loss + regularization

0
Po

O denotes local minima

Probabilistic interpretation

e Maximum likelihood:

g;b = argmax
é

HPT(}’z‘Xz',Qb)]

i=1
* Regularization is equivalent to adding a over parameters

q?b = argmax

¢ 1] Priyilxi, ¢)Pr(¢)

1=1

... what you know about parameters before seeing the data

Equivalence
* Explicit regularization:
I
¢ = arg;nin [Z bilxi, yi] + A g[qb]}
i=1

* Probabilistic interpretation:
I

1] Priyilxi, ¢)Pr(e)

1=1

qAb = argmax
¢

* Converting to Negative Log Likelihood (e.g. — log(+)):

A-gl¢] = —log|Pr(e)

L2 Regularization

* Most common regularizer is
* Favors smaller parameters (like in previous example)

A

b = argql;nin L[qb, {Xia Yz}] + A Z ¢§
J

 Also called
* In neural networks, usually just for weights, and called

Why does L2 regularization help?

By e R? a B, € R? B, e R? B3 € R?

Outputs are weighted
linear combination of
last layer activations.

Smaller weights
attenuate changes.

13

Same for the
pre-activations
into the last layer

14

Why does L2 regularization help?

And so on...

All the way back.

15

Why does L2 regularization help?

» Discourages fitting excessively to the training data (overfitting)
* Encourages smoothness between datapoints

L2 regularization (simple net from last lecture)

a)I , A=0 b) A = 0.00001 c) A = 0.0001
’ ’ ’
>/ \ / \ / \
3_0.0-/] / -//'
g y \ 'R \ 41 \ ;
NS NS NS
'I‘Oo.o 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
d)I , A = 0.001 e) A =0.01 f) A=0.1
- | A\ N\ A\
E._oo / - / /
5 \ 7! \ / \ /
I 0o.o 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Input, x Input, x

PyTorch Explicit L2 Regularizer

SGD

CLASS torch.optim.SGD (params, 1r=0. 001, momentum=0, dampening=0, weight_decay=6,
—— .
nesterov=False, *, maximize=False, foreach=None, differentiable=False) [SOURCE]

Implements stochastic gradient descent (optionally with momentum).

Parameters

)

params (jterable) - iterable of parameters to optimize or dicts defining parameter groups
Ir (float, optional) - learning rate (default: 1e-3)
momentum (float, optional) - momentum factor (default: 0)

weight_decay (float, optional) - weight decay (L2 penalty) (default: 0)
N —

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

ADAM

CLASS torch.optim.Adam (params, 1r=0.001, betas=(0.9, 0.999), eps=1e-08,
weight_decay=0, amsgrad=False, *, foreach=None, maximize=False,
capturable=False, differentiable=False, fused=None) [SOURCE]

Implements Adam algorithm.

Parameters

—)

params (iterable) - iterable of parameters to optimize or dicts defining parameter groups
Ir (float, Tensor, optional) - learning rate (default: 1e-3). A tensor LR is not yet supported
for all our implementations. Please use a float LR if you are not also specifying fused=True
or capturable=True.
betas (Tuple[float, float], optional) - coefficients used for computing running averages of
gradient and its square (default: (0.9, 0.999))
eps (float, optional) - term added to the denominator to improve numerical stability
(default: 1e-8)
weight_decay (float, optional) - weight decay (L2 penalty) (default: 0)

——

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

18

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

Regularization

* Explicit regularization

* Early stopping

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation

Implicit regularization

oLlgd g,
(9qb a— 0

bti1 =P —

* In the limit, as &« — 0, the gradient
descent equation becomes the
gradient flow differential equation.

* Doesn’t converge to the same place

|8 gradient
descent

20

Implicit regularization

L[] lim d¢ _ _ G_L
3¢ @0 dt 0

bti1 =P —

* The implicit regularization can be derived:

OL ||?

Loplg] = Ligl + 7 | 52

o
4

Implicit regularization

a) Loss b) Regularization c) Loss + regularization

gradient
descent

0 0
bo b0
Gradient descent doesn’t Plot of the Implicit regularization With regularization, continuous

i 2
converge to same location as (~||5L/a¢)||) to be added to loss descent converges to same place
(continuous) gradient flow. 22

Implicit regularization of SGD

* Gradient descent disfavors areas where gradients are steep

~ o || 0L
Leplé| = L|g] + 190

* SGD likes all batches to have similar gradients

0L, 0L 2
olo)

Lscplo] = Lop|o] + %

Implicit regularization of SGD

* Gradient descent disfavors areas where gradients are steep

~ o ||OL |
L =L — || =—
* SGD likes all batches to have similar gradients
~ ~ « = aLb OL 2
LSGD[(p]:LGD[(p]—FEb:Zl 96 0%
Mo lon|? o EN||oL, L]
BRI D3 vt

* Depends on learning rate — perhaps why larger learning rates generalize better.

—_—

Loss and Regularlzatlon Surfaces

Loss, L[]

Original Gabor Model
Loss

225

10-10

GD modification

2
a ||OL
1|00
Lseplé]
= Lig]+ & %fj oo

25

MNISTID no label noise

=== Full batch, LR = 0.5
=== Full batch, LR = 0.1
k Full batch, LR = 0.05

100 200 300 400
Hidden layer size

Generally, performance is

* best for larger learning rates
e best with smaller batches

MNISTID no label noise

=== Batch size 10, LR = 0.1
=== Batch Size 100, LR = 0.1
Full batch (4000), LR = 0.1

Test
0. \‘ Train
0 100 200 300 400

Hidden layer size

26

Recap: Implicit regularization of GD and SGD

 Larger learning rates may lead to better generalization

* SGD seems to favor places where gradients are stable (all batches
aggre on slope)

* SGD generalizes better than GD
* Smaller batches in SGD generally perform better than larger ones

Regularization

* Explicit regularization

* Implicit regularization

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation

Early stopping

* If we stop training early, weights don’t have time to overfit to noise
* Weights start small, don’t have time to get large
» Reduces effective model complexity

* Known as

* Don’t have to re-train with different hyper-parameters — just
“checkpoint” regularly and pick the model with lowest validation loss

. b) c)
) lter = 0 . lter = 1000 lter = 5000
Loss = 32.24 1 Loss = 1.64 Loss = 1.10
¢ "\, WA “N .
AN
O . @]
V v
o® % o® %
05 1000 05 10
f)
Iter = 10000 1 Iter = 50000 Iter = 200000
Loss = 0.80 . Loss = 0.36 Loss = 0.16
b))
4.? O
200 /° \<;!
3 1
© \.-/
o Y o® ®
=10 =y - - _— . . e .
0.0 0.5 1.0 0.0 0.5 1.00.0 0.5 1.0
Input, z Input, z

Input,

Simplified shallow network model with 14 linear regions initialized randomly (cyan curve in (a)) and trained wgi‘éh
SGD using a batch size of five and a learning rate of 0.05.

Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation

Ensembling

* Combine several models —an ensemble

 Combining outputs

| [Mean | Median/Frequent (Robust

Regression Mean of outputs Median of outputs
Classification Mean before softmax Most frequent predicted class
* Can be simply different initializations or even different models

e Or train with different subsets of the data resampled with
replacements — bootstrap aggregating (bagging)

32

Single Mo

Original

del vs Bagged Ensemble
b) Model 1 c)

Single model

Model 2

| X
N

» 1 Bagging Model 1 1 Bagging Model 2
00 © 05 1.000 05 1000 05
d)4 . Model 3 e) Model 4 f) Ensemble
' ' A~
> N\
> ‘\Y /N, | 77
g. ” o o ® ! \ e (/]
"5 R -/ \ ® " -I’ .ﬂ ® [)
3 .\001'“9/ sl o
Bagging Model 3 Bagging Model 4 Ensembling via bagging.
"'Oo.o' 05 " 1.000 - 05 1000 05 10
Input, Input,

Input,

Size of orange point indicates number of
times the data point was re-sampled.

33

Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Adding noise
* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation

Randomly clamp ~50% of hidden units to 0 on each

D 'O p O Ut iteration.

Iteration: 1 l[teration: 2

Iteration: 3 I[teration: 4

Makes the network less dependent on any given hidden unit.
At test time, all hidden units are active, which was not the case during training
* Must rescale using weight scaling inference rule — multiple weights by (1 — dropout probability)

35

Dropout

a) Original b) Turn off hidden unit 8 C) 2000 iters dropout (7/8/9)

>] |
SEL V% N L ¥ N LS % N

00 05 T 1000 Tos 7 Thiboo 7 Tos T T T
Input, Input, x Input, x

* Prevents situations where subsequent hidden units correct for excessive

swings from earlier hidden units
e (Can eliminate kinks in function that are far from data and don’t contribute to

training loss
36

Monte Carlo Dropout for Inference

* Run the network multiple times with different random subsets of
units clamped to zero (as in training)

 Combine the results using an ensembling method

* This is closely related to ensembling in that every random version of
the network is a different model; however, we do not have to train or
store multiple networks here.

Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Dropout

* Transfer learning, multi-task learning, self-supervised learning
* Data augmentation

Adding noise

Adding noise to input with different variances.

3)4.0 b) c)
‘ o, = 0.0 . o, = 0.60 . o, = 1.0
> / \ / \ e ‘\
5 1 1
OD | \‘/ | \\—/'/ ! x’
'1'%.0 -~ 05 1000 05 10 00 05 10
Input, = Input, = Input, x

* toinputs —induces weight regularization (see Exercise 9.3 in UDL)
* to weights — makes robust to small weight perturbations

» to outputs (labels) — reduces “overconfident” probability for target class .

Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Dropout

* Adding noise

* Data augmentation

Transfer & Multitask Learning, Augmentation

e Strictly speaking not regularization, but can help improve
generalization when dataset sizes are limited

Transfer Learning

(1) Train the model for
segmentation

Segmentation Assume we have lots of
Model > . . .
OUEPUE layer segmentation training data
Y .)
Depth : Assume we have limited
Model 7| output layer | * depth training data

(2) Replace the final layers to (3) Either:

match the new task and a) Freeze the rest of the layers and

train the final layers
b) Fine tune the entire model

42

Multi-Task Learning

Segmentation
output layer

Model

Depth
output layer

* Train the model for 2 or more tasks simultaneously
* Weighted combo of loss fncs
Liotar = @ - Lsegmentaiton + .8) Ldepth
* Less likely to overfit to training data of one task

* Can be harder to get training to converge. Might have to vary the
individual task loss weightings, a and £.

43

Self-Supervised Learning

_| Inpainting

Model ~ | output layer

The animal didn’t cross the because it was too tired.

Mask out part of the training data
Train model to try to infer missing data
* masked data is the target
=» Model learns characteristics of the data

Then apply transfer learning

Regularization

* Explicit regularization
* Implicit regularization
* Early stopping

* Ensembling

* Dropout

* Adding noise

* Transfer learning, multi-task learning, self-supervised learning

Data augmentation

Flip

Rotate and crop

d)

Vertical stretch

46

Image augmentation in PyTorch

import torch

import torchvision.transforms as transforms

Define augmentation pipeline
transform = transforms.Compose([

transforms
transforms

transforms.
transforms.
transforms.
transforms.

transforms

1)

.RandomHorizontalFlip(p=0.5),
.RandomVerticalFlip(p=0.3),

RandomRotation(degrees=30),

ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
RandomAffine(degrees=20, translate=(0.2, 0.2), shear=10),
RandomPerspective(distortion_scale=0.5, p=0.5),

.ToTensor(), # Convert image to tensor

Apply transformations multiple times to visualize augmentation
augmented_image = transform(image)

https://pytorch.org/vision/main/transforms.html

47

https://pytorch.org/vision/main/transforms.html

Error

Data Augmentation: MNIST1D

TrainError 0.00, Test Error 31.00

100

80 A

60 -

40 -

— train
— ftest
—— test (augmented)

20 A

Epoch

30 40

50

Examples in training set: 4000
Examples in test set: 1000
Length of each example: 40

* Randomly circularly rotate
* randomly scale between
0.8and 1.2

48

Regularization overview

Make function smoother

Increase data

~

Data
augmentation
Multi-task
learning
Transfer
learning

J

Combine multiple models Find wider minima

49

Feedback?

.....
.............
.......

https://docs.google.com/forms/d/e/1FAIpQLSfrbURkg6kpBTcZXCy_m622xuWEB0-eP4mYUSiQJfqkf7-0QQ/viewform?usp=header

